
JOURNAL OF FUNCTIONAL ANALYSIS 52, 252-256 (1983) 

A Necessary Condition for Local Solvability 
for a Class of Operators with 

Double Characteristics 

G. A. MENDOZA* 

IVIC, Matemdticas, Aparrado 1827, Caracas IOIOA, Venezuela 

AND 

G. A. UHLMANN* 

Massachusetls Institute of Technology. Cambridge, Massachusetts 02139 and 
Mathematical Sciences Research Institute, Berkeley, Cal~ornia 94720 

Communicated bq’ the Editors 

Received December 1982; revised March IO, 1983 

1. INTRODUCTION AND STATEMENT OF THE RESULT 

In this paper we prove that condition sub(Y) (see below), stated as a 
conjecture in the introduction of [5], is necessary for local solvability at a 
point for certain pseudodifferential operators with double involutive charac- 
teristics. The main novelty of this result is not in the method of proof, which 
follows the pattern originally presented by Hormander in [2] (we shall rely 
heavily on Hormander [3]), but rather the fact that the operator is not of 
principal type. That the condition is on the subprincipal symbol should not 
come as a surprise since many results in the literature on solvability and well 
posedness of the Cauchy problem for operators with characteristics of 
multiplicity higher than 1 involve conditions on lower order terms of the full 
symbol of the operator. 

We shall work with a classical, properly supported operator P on an open 
set X in R” whose principal symbol p is real and factorizes microlocally, i.e., 
near any point in T*x\O, p =p,p2 with pi real valued, Cm and 
homogeneous. We assume the doubly characteristic set C = (V E r*x\O] 
p(v) = dp(v) = 0) to be an involutive submanifold of codimension 2 and that 
at points in C, H,,,, H,, and the cone direction are independent. 
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We shall prove that a necessary condition for microlocal solvability at a 
point I’,, E Z, for the class of operators just described, is 

Sub(Y) Im usub(,9’) does not change sign at v,, along either the 

bicharacteristics of pi or those of p2. 

As usual, u&9) denotes the subprincipal symbol of P. 
One can easily prove that the bicharacteristic curves involved in the 

condition are changed only by a reparametrization if the factorization 
p =p,p2 is changed. Thus if P is regarded as an operator on l/2-densities the 
condition is invariant under conjugation of P by elliptic Fourier integral 
operators. 

We take over from Hormander 131 the following 

1.1. DEFINITION. Let KC S*X be a compact subset of the cosphere 
bundle of X. P is locally solvable at K if there exists an integer N such that 
for everyfE H$(X) there exists u E G’(X) for which Pu -f is smooth near 
K. 

Our theorem can now be stated as follows: 

1.2. THEOREM. Condition sub(.-/) is necessary in order that P be locall> 
soltlable at v0 E C. 

To motivate the proof, we want to explain how the conjecture that 
condition sub(Y) is necessary originated in (5 1. For this, consider the 
operator 

p = D,,D,, + B(x, D,), B E L;,(IP”). n>3 (1.1) 

which is a microllocal model for the class of operators considered here 
(see 161). Let b be the principal symbol of B. In the case Im b # 0 at C, we 
constructed in [5] a solution of Pu = 6 (6 is the b-function at 0) of the form 

u = i eitLr- s)l’+x”l’+s.rlII) 4.6 s, f, Q 

r , tz + /q-u, s, 0 
dtdsdr. (1.2) 

where x = (x’, x”) E R* x R”-‘, (= ((‘, <“)E k?’ X Ftnmz. a E sm(lF,” X 
R4 x R”\O) is a symbol with compact support in (s, t) and p(x, s, 5) is a 
homogeneous function of degree -1 related to b, as indicated below, in such 
a way that sgn Im b = sgn ImP. 

For u as in ( 1.2) we have, if Im b < 0, 



254 MENDOZAANDUHLMANN 

where II,= ((O;r)E T*iR”\O}, LIT = ((x,~)EN*(~~=.u~=O)(X,~~>/O} 
and Al = ((x, <) E N*(x, =x” = O)]x,r, > 0). The symbol of u on 
/1,\{& = 0) behaves essentially like 

&, I = je-i~14(x1.0.~“.(~,.0).0.~~.~“l131*/lr H 4 c~l)H(r*) - W-x,) w-r*)Yr*, (1.3) 

where H is the Heaviside function. In order to actually get a solution of 
Pu = 6 one chooses /I so that 
j-G1 b(r, 0, x”, 0, c2, t”) dr. Thus 

P(x, ,O. x”, (xl7 01, 0, t2, t”) I tl’/t, = 
M’, satisfies (4 t2Hr, + b) w, = 6(x,) (the 

first transport equation on /i,) on .4, and this was the reason for defining 
distributions like (1.2) in (51. 

Actually, on r2 # 0 the solutions of (-i<2HI, + b) w, = 6(x,) are all of the 
form 

w = c~~~~‘~‘~‘~~(c, H(x,) + cl H(-x,))/<, 

for appropriate c, and c2 but if b has a change of sign along the integral 
curve of H,, through a point v0 in x, = 0, C& = 0, then there are no 
distributional solutions of (-it2 H,, + b) w = 6(x,) in a neighborhood of v,, 
which agree with w, on r2 # 0 due of course to the behavior of the 
exponential function in M?. 

2. PROOF OF THE THEOREM 

Since both condition sub(T) and solvability at u. are preserved under 
conjugation of P by elliptic FIOs, we may assume 

P = D,, D,, + B(x, D,) (2.1) 

with B E f.i,(lR”) and v. = (0; O,..., 0, 1) E T*lR”. Now, if P is solvable at r. 
and W is a bounded neighborhood of 0 in R” one can find an integer m and 
a pseudodifferential operator A which is smoothing near vo, such that for all 
u E C$(w) 

P-2) 

(by Proposition 2.5 of 131). We shall then assume that P violates condition 
sub(Y) at v0 and construct asymptotic solutions to P*u, = 0, u, E CF( W) of 
the form @a. Let b = o(B*) = osub(P*). Without loss of generality we may 
assume Im b changes sign at r = 0 along the integral curve t + y(t) = 
(f, 0 . . . . 0; 0 )..., 1) of H,, through vo. 

The first thing to do, following the ideas mentioned in the previous section 
is to get b on {r, = O} in the first term of the asymptotic expansion in T of 
U, = P(v,). Thus we take g independent of x,. Second, we want to get as a 
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main contribution from b in the asymptotic expansion of u,, b(x, , 0; 0. 1). In 
order to do that, we make the asymptotic change of variables (as in Ivrii and 
Petkov [ 4 ] ). 

yi = T”‘.Y~j, j = l..... jr (2.3) 

with ~,=O<S~<S~=,...,=S,< 1, 2sz=s,. (We shall take s2=jr and 
choose g( .Y) = 4: q, where 9 = (0, ‘1~0 ,..., 1) E R”, qz # 0. The reason for 
making the change of variables (2.3) is to get the main contribution from b 
at ,Y? = ... = x, = 0 since .rj = yj/r’J --* 0 as r -+ co. Also. we weigh ?c2 lower 
than .vj( j > 2) to be able to approach (rz = 0 1, where the change of sign of 
Im b occurs, as T + co. Under the change (2.3). P is transformed into 

where r-“y means (rFsl~,,..., rpsnyn), and similarly r’Dy. Let $: V” + IF’” be 
the map g(x) = r’x, so that P, = 4 ~’ *P@*. Then if P is solvable at I*,, we 
have from (2.2) 

I/~*L’lI-, < c(ll~*pP~~II., + lI~*~/I-,.-,, + lI~*~,4) 

if L’ E CF(M/), where A, = d-‘*A#*. In order to contradict this bound. we 
are going to construct L’,(Y) = eirK+ir’ ” xy=, r-j” di(y, r) with the #i in a 
bounded subset in CT(w) and /I =/?(J, r) in a bounded subset in C”( IV) 
and Im /I > 0 in W. Thus we need the following bounds which we obtain 
from Lemma 6. I of \ 3 1. 

2.1. LEMMA. Let v, be as abotle. Then 

(I) lI~,,ll_, < C,r-” for all m > 0. 

(2) tf o~(J~~) f 0 for some J’,, E IV’. icheve Im /3( r,)) = 0. then 
/IL’TI/m,,,> Cr-m--n.:2. 

Since Ijo*Ar~~,II,, is very small if the support of the #i is close enough to 0 
we only need to find 21, so that /I P,* ~~~ll,v < Cr- V-H ’ ‘. To do this we 
observe that by standard asymptotic expansion results (see [ 11, for instance) 
we have, if a = e”’ “4 with /3 and qi as QI~ above and 0, (P*) - s pz 1.. ,v; 
homogeneous. that 

where Li = x,n,c, q,..i(rrs~, rrmZ ‘q) DF with q,.i linear combination of 
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derivatives of the p,, q,,j = 0 if /aI > 2 + (j - 2)/5, and the remainder 
satisfies IIR,(a) eirg [I,,, < C,?‘, where M, --) --oo if I+ 00. 

Thus the first transport equation we have to solve is 

r4’3 q2 D,,, a, + r5j3 b(r-“y, s’ty) a, = 0. 

Its solution of course is a, = eiT’ jil with /? = - J’:I b(r-‘(r,~‘); F2”~) df/q,. 
We shall choose c and the sign of q2 in such a way that Im /? > 0 if r is large. 
We tave 

p = ,I’ b(t, 0; o,..., 0, 1) df/$ + r-‘13P,(y, r) 

with p, in a bounded set in C”(w). Since Im b changes sign at v,, along y we 
may find t, < 0 < t, arbitrarily close to 0 such that, say, Im b(y(t,)) < 0 and 
Im b(y(t,)) > 0. This implies that any primitive of Im b 0 y has a strict 
minimum in [to, t, ] at some interior point c which we then use as the lower 
limit of integration to define p. We now choose the sign of q2 so that 
Im /? 2 0 (thus sgn qz = 1). It follows that outside a compact interval 
Ic (t,, t,) Imp is bounded from below by a positive constant on all of W if 
r is sufficiently large. 

Now let 4 E CF(f,, t,) and WE C$(R”-‘) be such that 4 = 1 in a 
neighborhood of I and ~(0) # 0. We may assume t, and f, as close to 0 as 
we wish and take w with support so small that supp(#(~,) ~(J~~,..., y,,)) c W. 
Then P,*(eiTRa,#y/) = rjzO r’2-“‘3L.j(a,&) plus an error e,., such that 
II e,,, II,v < C, r +. We now proceed by induction and obtain ~1, as desired 
solving successive inhomogeneous transport equations to obtain the lower 
order terms in the expansion of L’,, following the usual procedure. Thus the 
theorem is proved. 
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